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Using a recently developed Boltzmann-Langevin treatment, we study cluster formation in unstable nu-
clear matter. The self-consistent propagation of the spontaneous fluctuations restores the predictive
power of the one-body approach, even when such catastrophic phenomena are addressed.
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Many-body systems far from equilibrium are encoun-
tered in many areas of physics and the development of
quantitatively useful approximate methods for describing
their dynamical evolution forms an important part of
modern physics. The complete dynamical treatment of
many-body systems requires the consideration of the
correlated evolution of a large number of degrees of free-
dom and is usually impractical. One avenue towards re-
ducing the problem to a tractable form is to retain only a
small portion of the dynamical information [1]. In gen-
eral, the resulting effective equation of evolution for the
retained variables will be nonlinear and so the associated
dynamics may exhibit chaotic features, such as bifurca-
tions and instabilities. Moreover, the specification of the
retained variables characterizes an entire ensemble of mi-
croscopically different states of the many-body system.
Therefore, the reduced description naturally admits con-
cepts from nonequilibrium statistical mechanics, for ex-
ample, entropy and irreversibility. Moreover, the fact
that the microstate is incompletely specified introduces a
stochastic element in the evolution of the projected state,
so that the development of the retained variables resem-
bles Brownian motion, with the missing information in
effect acting as a heat bath.

In nuclear dynamics, as in many other areas of physics,
it often suffices to retain only the reduced one-body densi-
ty matrix. In the mean-field approximation, the fluctua-
tions arising from the stochastic part of the evolution are
ignored and a single average effective one-body density is
considered. The approximation is most useful when the
particular ensemble involved displays only little diversity,
as is usually the case at relatively low degrees of agita-
tion. But when widely different manifestations of the sys-
tem are dynamically accessible the relevant ensemble is
multimodal and, accordingly, it is meaningless to employ
a single ‘“average” representative one-particle density.
This problem is especially evident when the dynamical
evolution contains branch points from which very dif-
ferent further developments can occur, such as when the
system enters an unstable region. Under such cir-
cumstances, one might be tempted to abandon the one-
body approach altogether, in favor of a true many-body
approach. However, a much simpler approach consists in
retaining the stochastic element in the one-body evolu-

tion. Even though the system is then still represented in
terms of a mean-field configuration, at any particular
time, the stochastic nature of the reduced equation of
motion enables the various members of the ensemble to
experience different histories. It should also be noted that
while the occurrence of instabilities renders the mean-
trajectory method incapable of making reliable predic-
tions, the inclusion of an entire ensemble of different
dynamical evolutions restores the predictive power of the
one-body approach.

In this paper we present a first application of a recently
developed nuclear Boltzmann-Langevin (BL) treatment
to a catastrophic process, namely, the clusterization of
matter at subsaturation density. Although the approach
was developed within the context of nuclear dynamics,
the method is quite general and may therefore be of
much broader utility.

Our starting point is the so-called Boltzmann-Uehling-
Uhlenbeck (BUU) equation, which provides a semiclassi-
cal evolution of the one-nucleon phase-space density
f(r,p,t) taking into account the propagation in the mean
field together with the average effect of Pauli-blocked
two-body collisions between individual nucleons [2]. This
approach was first developed by Nordheim for the
description of electrons in a solid [3]. Recently, the BUU
theory has been extensively applied to nuclear collisions
and has proven fairly successful in describing one-body
observables [4]. However, the model cannot provide a
description for large fluctuation phenomena, such as mul-
tifragmentation, because it determines only an “average”
dynamical history.

Therefore, it has been proposed to extend the model by
including the fluctuating part of the collision integral
[5-9]. In particular, in Ref. [8] we have proposed and
tested a specific implementation of the BL equation,

%{Hmﬂ,f} =1111, ()

where HIf] is the self-consistent mean-field Hamiltonian
and I[f] is the stochastic collision term. The collision
term produces sudden branchings of the dynamical his-
tories, resulting in a bundle of trajectories. By contrast,
the effective Hamiltonian leads to a smooth evolution. It
is therefore convenient to consider the two evolutions sep-

© 1992 The American Physical Society 885



VOLUME 69, NUMBER 6

PHYSICAL REVIEW LETTERS

10 AUGUST 1992

arately.

In order to solve the above equation of motion, we rep-
resent f(r,p) on a lattice of grid points in phase space.
The size of each lattice cell is given by As =ArAp/h®, D
being the dimension of the space, and the value fx at the
lattice point sx =(rg,px) represents the average value of
f over the cell K. Since each physical particle represents
a phase-space volume of h”, at least, we first divide the
phase space into cells K of the order of unity.

During a given small time interval, Az, the expected
number of elementary collisions N from the phase-space
cells K =1 and 2 into the cells 1" and 2’ is given by

Nigir=f1fof1fro v Ast AL, ()
where o is the elementary transition rate containing the
energy and momentum conservation and the Pauli block-
ing factors f=1—f express the availability of the final
one-particle states.

The actual number of elementary transitions N is a sto-
chastic variable, having a Poisson distribution character-
ized by the above mean value N and a variance 6§ =N.
Therefore, the statistical properties of 7[f] are thus fully
determined by the mean transition rates N. In our nu-
merical implementation, we simulate the distribution of
N by a Gaussian with the variance of =N. That this
indeed provides a numerically accurate treatment of the
Langevin term was recently illustrated [10].

The collisionless (Vlasov) part of the evolution is made
by means of a standard matrix technique. However, in
order to achieve sufficient accuracy a relatively fine lat-
tice is required and we therefore further divide each phys-
ical cell K into sufficiently small subcells k of volume &s.
The actual number of collisions Nk, is then shared be-
tween the subcells in proportion to the mean changes
nijki, which are given in analogy with Eq. (2), so that
nijk1=N,1KLﬁ;jk1/Nlij. This method introduces the ap-
propriate correlation of the noise over volumes As, thus
ensuring that the relation between mean and variance is
preserved on the physical scale, and it has the numerical
advantage that both the collision term and the mean-field
propagation are computed with the same small cells, thus
avoiding degradation in accuracy.

As is generally the case with lattice calculations, the
result is useful only for extracting observables that are
smooth over the domain of a lattice cell. Fortunately,
Planck’s constant provides a lower limit on the physically
relevant resolution in phase space, and the employed lat-
tice spacings (see below) appear to be fully adequate in
the context of our present studies.

We have studied a gas of fermions situated on a two-
dimensional torus. For the effective one-body field we
employ a simplified Skyrme interaction, U(x) =A4p(x)/
po+ Bp(x)?/pd, with 4 =—100.3 MeV and B =48 MeV.
Moreover, po=0.55 fm ~2 is the saturation density and
p(x) is the average of the density p(x,y) with respect to
the transverse direction y. Since the effective field U then
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depends on x only, the same holds for the accessible
modes, and this simplifies the analysis considerably. In
order to mimic standard three-dimensional matter, we
have required a Fermi momentum of Pr=260 MeV/c,
and a binding energy of 16 MeV/nucleon, and that a den-
sity doubling lead to approximately zero binding (corre-
sponding to a compressibility modulus of K = 300 MeV
for a calculation in three dimensions). It should be noted
that the finite size of the spatial lattice emulates the
effect of a finite interaction range, as has been explicitly
verified.

We then solved the stochastic BUU equation on a lat-
tice of 21 cells in the x direction and 25X25 cells in
momentum space. The physical cells had a spatial reso-
lution of Ax =1 fm, corresponding approximately to the
range of the nuclear force. Since there is no dependence
on y, the length in the y direction was chosen to be large
(L, =5000 fm). The momentum resolution was 65
MeV/c, so that the momentum space was extending up to
px =py, = 1+ 682.5 MeV/c. The subcells were identical to
the macrocells, except for the x direction for which the
accuracy of the gradients requires a minimum of &x = ¥
fm. An accurate calculation of the Vlasov propagation
was ensured by employing the relative short time incre-
ment 8t =0.5 fm/c. The range of the two-body interac-
tion entering in collision integral was taken as 1.2 fm, and
the longer time steps At =35 fm/c were sufficient for ob-
taining a reliable calculation of this contribution to the
evolution.

We have initialized the system as a uniform gas at half
the saturation density, with Fermi-Dirac occupancies cor-
responding to the small temperature 3 MeV; this is in the
mechanically unstable regime of the phase diagram. We
analyze an ensemble of 100 trajectories; for each trajecto-
ry, the calculation was stopped at 90 fm/c. We have
verified that our results and conclusions are robust
against variations of the numerical parameters.

In Fig. 1 we show the time evolution of the density
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FIG. 1. The density profile 5(x,r) associated with one partic-
ular trajectory vs the position x shown at eight different times .
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versus the position for one trajectory of the ensemble. In-
itially the system has a uniform density, but soon the fluc-
tuations are breaking this initial symmetry. Subsequent-
ly, the fluctuations are rapidly amplified by the action of
the effective one-body field, thus leading towards frag-
ment formation. We note that the density distribution of
each particular system keeps changing with time, with
the clusters exhibiting fusion and fission. In this manner,
each particular trajectory explores the various accessible
configurations, while the distribution of trajectories
quickly approaches the appropriate statistical limit.

To get a deeper insight into the mechanism of frag-
mentation and the role of the instabilities, we can study
the onset of the phenomenon within the linear response
theory. If the system is unstable, some eigenmodes will
be exponentially amplified with a characteristic time 7
[11]. We have computed the actual dispersion relation
by analyzing the BUU evolution (without fluctuations) of
a uniform density at 3 MeV temperature perturbed with
a small (1%) harmonic variation in the x direction. In
Fig. 2 we show the evolution of 1/ versus the wave num-
ber k of the eigenmode. As mentioned above, the lattice
discretization simulates a finite range of the effective in-
teraction and we have chosen a value corresponding to a
physically reasonable range, which suffices for our present
illustrative purposes. In a more refined approach, one
should employ a finite-range interaction functional and
perform the corresponding convolution at each time step,
thus rendering results that remain unchanged as the lat-
tice spacing is reduced.

This normal mode analysis will allow us to study the
interplay between instabilities and fluctuations. Indeed,
considering the Fourier transform of the fluctuations of
the density, F(k,t) =fdx e?**5p(x,t), we find

o () =(|F(k,0|»
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FIG. 2. The growth rate 1/t of harmonic modes with re-
duced wave number & in two-dimensional nuclear matter at half
the saturation density, as resulting from our numerical im-
plementation of the BUU model.

Within the linear response regime and for a given insta-
bility mode k, the random two-body collisions act as a
continuous source of fluctuation Cx. Therefore the vari-
ance oy evolves according to the equation

6 =Ci+Q/t)ox , 4)

where the second term is due to the unstable character of
the normal mode k, which has a growth time ;. The
solutions of this equation are given by

2% — 1) 4 g4 (0)e 2 * (5)

o (1) =% Crrile
where o4 (0) is the initial fluctuation, which is zero in the
present case. The characteristic amplitude of the fluctua-
tions is determined by Ci, and their time scale by 7.
This solution, Eq. (5), provides a good understanding of
the growth of the fluctuations. Figure 3 displays the fluc-
tuation o versus the reduced wave number k. At the
early stage of the evolution (¢ < 74/2), one mainly ob-
serves the Fourier component of the noise, oy (¢) =Cxt,
and indeed we find that the spectrum at =35 fm/c is
characteristic of a system where the fluctuations must be
correlated over a domain of at least 1 fm in size. In par-
ticular, the spectrum does not extend beyond k =1 fm -
and is symmetric around k =0.5 fm !, corresponding to
a spectrum on a lattice with a spacing of 1 fm. As time
goes on, we observe the interplay of the stochastic col-
lisions and the exponentially increasing propagation due
to the unstable effective field.

The continual action of both agencies shifts the peak to
slightly higher frequencies (from 0.5 to 0.6 fm ~!). How-
ever, it should be noted that the response above 1 fm ~!
remains nearly zero throughout this initial stage and that
the system is never fully dominated by the instabilities.
This demonstrates that the system is keeping some
memory of the physical processes that have induced the
fluctuations.

After 30 fm/c the system enters into a nonlinear re-

t =45 fm/c §

3 02

1 1 1 - 1 o.o

o E t =16 fm/c t =565 fm/c 0.4
I, 02f s

o] 1 x 10 0.2

) 1 1 1 1 A 1 1
~ 0.0 0.0
t =251 =

> 0 'm/c t =65 fm/c 0.4
\:‘ 2

5 o1 x 10 0.2

1 A P . 0.0

0.8 t =35 fm/c =75 tm/c 04

0.4 x 10 0.2

0.0 L L - . L . - 0.0

0.25 0.50 0.75 1.00 1.25 0.25 0.50 0.75 1.00 1.25

k (fm™)

FIG. 3. The variance o vs the reduced wave number &,
shown at a number of times ¢.
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gime, with frequency doubling leading soon to an irregu-
lar transition stage, before reaching an equilbrium
characterized by a statistical population of “fragment”
configurations. This equilibrium behavior is independent
of the specific early evolution, as we have explicitly
verified by making an alternate calculation starting with
an uncorrelated random noise on the one-body density.
In an actual nuclear collision, the expansion of the system
will effectively truncate the evolution after a finite time,
and the resulting fragment mass distribution will in gen-
eral depend on the specific character of the fluctuations
employed. Consequently, the proper treatment of the
fluctuations is important and one may hope that mul-
tifragment observables may provide an informative basis
for direct confrontation between theory and experiment.

In conclusion, using a recently developed nuclear
Boltzmann-Langevin model, we have made a first dynam-
ical simulation of a catastrophic evolution leading to-
wards the multifragmentation of an initially uniform sys-
tem. This calculation is based on a stochastic one-body
description. The theory we have used is an extension of
the Nordheim-type transport theories that have been
widely used in recent years for the study of heavy-ion re-
actions. The essential new feature of the BL model is
that it permits the spontaneous breaking of symmetries,
which is essential for producing catastrophic phenomena,
such as clusterization. While the ordinary theory is
deterministic and is unable to make reliable predictions in
the presence of instabilities, the inclusion of the stochastic
term restores the predictive power of the theory. Such a
description in terms of an ensemble of trajectories is
closely related to statistical mechanics and is therefore
able to accomodate a high degree of dynamical branch-
ing.

In the presented results, we have been able to discern
two dynamical regimes: an early linear regime character-
ized by a competition between the stochastic creation of
fluctuations and their exponential evolution due to the in-
stability of the effective field, and a later complex one
where the system behaves in an irregular manner as it
seeks to condense into fragments. Since the detailed evo-
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lution towards equilibrium has been found to be sensitive
to the specific treatment of the fluctuations, it appears
that the inclusion of fluctuations is important for the
quantitative description of fragment production in nu-
clear collisions, and consequently it may be expected that
actual collision experiments can provide a means for test-
ing the theory.
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